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Abstract
State-space modeling, sometimes known as hierarchical or mark-recapture modeling, is an 

innovative surveillance modeling tool that can correct for underreporting in surveillance data, 

estimate probability of false positives, and allow data fusion between partially-correlated data 

sources. Most threat agents cannot be perfectly detected under all conditions. Imperfect 

detection can cause underreporting bias, where observed threat conditions appear to be less 

severe than they actually are. Agents may go undetected although present on the landscape 

(false negatives), or may be detected at lower densities than are actually present 

(underestimates). Agents may be detected unevenly (observation heterogeneity) by different 

observers, different devices, or at different locations. Additionally, harmless agents may be 

mistaken for threat agents due to detection limitations (false positives). State-space modeling 

can correct for these sources of bias, improving the reliability of surveillance, sensing, risk 

analysis, and threat reporting.

There are two processes contributing to collected data, an observation process affected by 

interaction between observer and environment, and an underlying, partially-observed state 

process which is the density or distribution of the agent we wish to characterize. State-space 

models provide explicit estimates of both these processes. State-space models incorporate 

supplemental information from data that have multiple records at each spatial location, by 

either sampling repeatedly through time (temporally repeated measures: TRM), or by using 

multiple independent observers (MIO). It is the differences between repeated measures that 

allow us to separate estimates of detection and agent state to correct for underreporting. Other 

Chemical, Biological, Radiological and Nuclear (CBRN) surveillance modeling methods can 

underestimate risk when detection is less than perfect, or overestimate risk when false-

positives occur.

State-space modeling uses existing data collection methods such as sensor networks, or 

disease surveillance records. The novelty of the method occurs during analysis, where 

observation and state are dissembled into separate model stages, then recombined to produce 

an integrated model likelihood. Analysis can occur within a frequentist or Bayesian framework, 

using software in the mathematical computing environment R or WINBUGS respectively.

State-space modeling has tremendous potential for enhancing surveillance in CBRN defense. 

Particularly, state-space models explicitly estimate a detection probability, which allows data-

fusion, and the objective assessment of false-negatives and positives to be included in risk 

analysis. An overview of state-space modeling theory and methods is presented to an 

audience of intermediate mathematical literacy, that is, non-mathematicians with scientific or 

engineering training. State-space modeling literature is reviewed where data are relevant to 

CBRN surveillance, such as disease surveillance, and sensor data. State-space modeling 

methods are applied, as demonstration, to simulated data. TRM, and MIO are compared to 

estimates from non-repeated measures for precision and bias. 

Suppose we have some terrain to monitor

We deploy sensors in pairs along a grid or 

at random

An aerosol infiltrates the area

Triggering some, but not all the alarms

How It Would Work With Aerosol Sensor Data (simulation)
While state-space modeling has been applied to a wide variety of other surveillance data, we could find no instance in 

literature in which state-space models have been applied to bio-aerosol warning systems.

Methods:

We simulated data to emulate 30 Tactical Biological (TAC-BIO) Detectors or Biological Agent Warning Sensors (BAWS), 

using a binomial random number generator to simulate imperfect detection. Detectors were employed in pairs. Thirty 

detectors were used across 1000 simulations for each analytical method. TRM data included no within-pair detection 

heterogeneity, simulating conditions where samples are taken in rapid succession. MIO data included within-pair detection 

heterogeneity, simulating fusion of data from unequal observers or unequal sensor technology. Detection probability was 

set at 60% for TRM and was allowed to vary around 60% for MIO. Simple single-sample methods treated all detectors as 

independent. Single-sample methods, where undetected incidence is not estimated, are currently standard for most 

surveillance. We estimated the proportion of area affected using each method, then compared estimates to the “true” area 

used for the simulation. Data generation was performed using the mathematical programming language R 3.0.0(R Core 

Group 2013), and state-space models used the R library unmarked (Fiske and Chandler 2011).

Setup:                                                                      Results:         

TRM and MIO models gave estimates that were nearly unbiased, that 

is, the mean of the estimates was very close to the true values. 

Confidence intervals were relatively broad, reflecting the need to 

collect larger samples for these models. Single-sample estimates were 

biased downwards in all cases due to underreporting.

Conclusions:

State-space modeling is a promising method that can provide better 

estimates of affected areas than currently used single-sample 

methods. State space methods will require an increase in sampling 

frequency or intensity. However, adopting state-space methods for 

threat surveillance would reduce false-negative/positive alarms in 

sensor networks, allow data-fusion between sensors of unequal 

sensitivity, and provide a more robust and complete assessment of the 

threat environment. 
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In the Literature

State-space modeling originated as a method for estimating size and distribution of imperfectly observed 

populations (de Valpine and Hastings 2002), and has since been extended to cover a wide variety of 

estimation needs. State-space modeling has been particularly useful for estimating under-reporting in 

disease studies (Abubakar et al. 2010; McClintock et al. 2010), and attribution of false-positives in 

distribution estimates (Royle and Link 2006). Special modeling accomplishments that appear in literature 

and are especially relevant to risk assessment are shown below.

Correcting for under-reporting using fusion of two incomplete data sets

Buenconsejo et al. 2008

Mapping of an imperfectly observed population using geo-referenced covariates

Kery et al. 2005
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Formulation of a two-tiered state space model for observation and state

A model for distribution or incidence with under-reporting:

Where yi is the observed occurrence/non-occurrence  at location i, p is the detection 

probability, zi is the indicator function, ψi is the probability of incidence at site i.

Observation and/or state can vary from location to location through association with 

covariates:

}  The observation model                     Equation1

}  The state model                                Equation 2 
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 }  Heterogeneous state                     Equation 3

}  Heterogeneous detection              Equation 4          

Where β0:n are incidence coefficients, x1:n are incidence covariates, α1:m are detection 

coefficients, and w1:m are detection covariates. 

Models for states other than incidence, such as abundance or density, may be 

formulated by substituting count or proportion distributions for the Bernoulli 

distribution in Equation 2.

Buenconsejo et al. (2008) used a type of state-

space model, called a spatial capture/recapture 

(SCR) model, to reduce estimation errors for 

density of Rocky Mountain spotted fever (RMSF) 

present in the Case Reporting Form (CRF:map a), 

and the National Electronic Telecommunications 

System for Surveillance (NETSS:map b). 

Data fusion through SCR (map c) increases 

density estimates for RMSF over both single-

source estimates. 

SCR is not simply the union of CRF and 

NETSS, but includes an estimated count of 

cases missed in both archives!

Kery et al. (2005) used a state-space abundance 

model to predict population sizes in imperfectly 

counted birds according to modeled associations 

with environmental co-variates archived in 

Geographic Information Systems (GIS).

State-space models allow co-variates such as 

forest cover that affect both  state (abundance in 

this case) and detection to be un-confounded. 

A map of the modeled population is then 

produced using GIS rasters. 
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